Verification/Restart/Backup Testing For RELAP5-3D

Dr. George Mesina

RELAP5 International Users Seminar Idaho Falls, ID September 12-13, 2013

Outline

- Purpose
- Background RELAP5 Testing
- Structure and Content of a Verification File
- Verification Suite, Features, and Test Matrix
- Null Testing
- Restart Testing
- Backup Testing

Purpose

- Improve Verification of RELAP5-3D
 - Establish solution metrics for verification
 - Create ability to detect small changes in solutions
 - Provide greater coverage of important code features
 - Test matrix to identify what features are covered by test cases
 - Systematize testing of processes
 - Null testing, restarts, backups
 - Automate

Background – Development of RELAP5 Testing

- Original Testing
 - a) Several key values spot-checked visually by RJW
- Automatic installation test case report
 - a) Checked that cases ran to completion and recorded number of advancements.
 - b) Test set expands as new features are added
- 3. <u>Diffem</u> script compares all printed output between two "printed output" files (the "-o" command line parameter)
- 4. Additional tests, such as tt=3,7,11,15 and extensive test sets added.

Background - Weaknesses

- Does not catch small changes
 - Fewer than 8 decimal places can be checked with diffem
- Coverage analysis (Understand 2.0):
 - < 75% of lines of code in relap/ directory tested by install cases
 - ~ 55% of lines of code in envrl/ directory tested by install cases
- Not all important features covered

Verification Strategy

- "Staged Verification"
 - Initial coding of a model is verified, then from version to version, model's calculation shown to be the same or changes justified.
 - Previously done via diffem on collection of test cases.
- Improve verification over what was previously done
 - Improve <u>coverage</u>
 - Cover important code features
 - Select input models to test them
 - 2. Improve detection
 - Check most important variables
 - Governing equation primary variables
 - L₁ norm of arrays of primary variables
 - Put norms on VERIFICATION file for comparison

Detection - VERIFICATION File Values

Notation	Quantity	Symbol	Annotation	Area
Uf	Liquid internal energy	$\mathbf{u_f}$	Uf	TH
Ug	Gas internal energy	$\mathbf{u_g}$	Ug	TH
VOIDf	Void fraction of gas	$\alpha_{\mathbf{g}}$	VOIDf	TH
QUALa	Noncondensable Quality	X_a	QUALa	TH
Boron	Density of Boron	b	Boron	TH
Vf	Liquid velocity	$ m V_{f}$	Vf	TH
Vg	Gas velocity	V_{g}	Vg	TH
RHSth	RHS of Δp Linear System	b	RHSth	TH
SOLth	Pressure Drop / Velocities	$\Delta p / (V_f, V_g)$	SOLth	TH
Error	Errors	3		Advancement
Temp	Temperature	T	Temp	Heat Transfer
Flux	Neutron Flux	φ	Flux	Neutron Kinetics
dtsum	Time steps sum	Δt, Δtkin	dtsum	Advancement
Trips	Trips	$T_{\mathbf{r}}$	Trips	Trips
Cntrl	Control System Value	Y	Cntrl	Controls
Rdc	Reductions	N/A	Rdc	Advancement
Rpt	Repeats	N/A	Rpt	Advancement

Statistical Testing Theory for <u>Detection</u>

H₀: No difference between calculations of two code versions

$$-X_{i} = \begin{cases}
0 & \text{Case i has NO differences between} \\
& \text{VERIFICATION files of the two codes} \\
1 & \text{otherwise}
\end{cases}$$

- Test: Accept the null hypothesis if X = 0
 - Acceptance Region: {0}
 - Rejection Region for X: {1}

	H ₀ is true No differences exist	H ₀ is false Differences exist
Accept H ₀	Correct Report: "No differences"	Type II Error Don't find extant differences
Reject H ₀	Type I Error <u>Detect</u> non-existent differences	Correct Report: "Differences found"

A Detection Theorem

- Theorem <u>This test commits</u> No <u>Type I Error</u>.
 - Type I Error is saying calculations differ when no difference exists.
- Proof: Assume H₀ is true
 - Then there are no differences in calculations for any input deck
 - No differences in "calculations for test deck i" means X_i = 0
 - $-P(X_i = 1 \mid No \text{ difference exists for } i^{th} \text{ case}) = 0.0$
 - Also, if no test has a difference, $X = max \{X_i \mid i = 1, 2, ..., N\} = 0$
 - Thus, $\alpha = P(X = 1 | No difference exists) = 0.0$
- Test will <u>never</u> send programmers after a phantom bug.
- The test has a **significance level**, $\alpha = 0.0$.
- Of course, the test must be programmed properly.

Verification File Considerations

- Does the Verification File catch every possible difference?
 - Numerical round-off? Almost impossible with real*16 sums
 - Numerical cancellation? None with L₁ norm
 - Bad calculation missed?
 - <u>Secondary</u> variables (derived from primary) errors <u>are caught</u> when they affect primary variables
 - Tertiary (output-only) quantity errors can be missed
- Detection is recognition of differences between two <u>different code runs</u>
 - Can be <u>different versions</u> of code on same input
 - Original run vs. <u>restart</u> from intermediate time
 - Original run vs. run w/ forced backup
- Other considerations
 - Identification of run
 - User control

Functional Requirements for Verification File

	Description of verification file and data
1	On/off switch for verification file
2	Verification file naming by default or via input
	When on, automatic verification dump on final time step
4	Start and end time specified via input
5	Manageable size. Less than 1 MB.
6	Unique identifiers for code version and computer name
	Includes sums (L ₁ norm) of calculated values
8	Includes execution time

- **Note:** L₁ norms are presented 2 ways:
 - Scientific Notation
 - Hexadecimal

A Verification File

- Header
 - Code & Computer ID
 - Data/Time Compiled
 - Date/Time Run
- Input Case
 - Case # & Title
- Dump
 - Dump #
 - Advancement #
 - Cumulative Time
 - L₁ norms
- Footer \(\simeq \)
 - CPU Time
 - Bytes (Upper Limit)

RELAP5-3D/Ver:4.1.3 steelers.inl.gov Time compiled: Aug 14 2013 13:29:15

Pate and Time of run: 13/08/14 15:04:49

P=	1.1610017826711973E+07	4016624	F43A746	CAAC00	000000	0000000
Uf=	1.3706563288757732E+07	4016A24	A8693D8	0DB180	000000	000000
Ug=	5.3792556235069888E+07	40189A6	7961E16	C52400	000000	000000
VOIDg=	2.0127747744316551E+01	4003420	B4137FF	A34180	000000	000000
QUALa=	0.000000000000000E+00					0
Boron=	0.000000000000000E+00					0
Vf=	2.8891214895206032E+02	400720E	98297FE	2E04B8	3000000	000000
Vg=	9.1675057057565303E+02	4008CA6	012B255	E284C0	000000	000000
RHSth=	4.2453960924539154E+07	401843E	5E47657	4C8C12	2980000	000000
SOLth=	1.6144078316381101E+05	40103B5	0643EB6	35D838	3000000	000000
Error=	-9.9606881069212402E-05	BFF1A1C	812FC4B	5E8000	000000	000000
Temp=	1.0939814425864978E+05	400FAB5	624EE22	86FA5E	D00000	000000
Flux=	2.7820142401306227E+07	4017A88	06E66BC	014000	000000	000000
dtsum=	3.000000000000001E-03	3FF6893	74BC6A7	EFA000	000000	000000
Trips=	-1.6980010000000000E+00	BFFFB2B	0318B93	469800	000000	000000
Cntrl=	8.6399604127190748E+05	4012A5D	F815219	769C2E	2BB3AE	3200000
Rdc:Crn	t,Extrp,Mass,Prop,Qual=	0	2	0	2	0
Rpt:Air	,DelP,Flip,Jpack,Vpack=	0	0	0	0	0

2764

3.609449999999996E-01 size

Verification File – Closer Look

Header

RELAP5-3D/Ver:4.1.3 steelers.inl.gov

Time compiled: Aug 14 2013 13:29:15

Date and Time of run: 13/08/14 15:04:49

Top of Case

Case 1 edward's pipe problem base case with extras

Top of Verification Dump

Dump 2 Advancement= 509 time= 5.0000E-01

Footer

CPU Time= 3.609449999999996E-01 size 2764

Verification File Example

- Sums accumulated in Quadruple Precision (128-bits)
 - Red shows bits beyond double precision accuracy
- Left side 1pe24.16 Right side Z32 (Hexadecimal)

```
4.9365983737086219E+07 401878A1EFDE58D75B000000000000000
P=
        1.9649507480408072E+07 40172BD3E37AFC05FEC00000000000000
Uf=
        5.4520489485535964E+07 40189FF554BE260AE0000000000000000
Uq=
        7.0158488970410998E+00 4001C103AB179E074A00000000000000
VOIDq=
        0.00000000000000E+00
QUALa=
Boron=
        0.00000000000000E+00
Vf=
        2.0448213290728118E+02 400698F6DA1FDA3236D40000000000000
        2.3165076689908255E+02 4006CF4D3151A9C1FEC10000000000000
Vq=
```


Verification File Theory

	H ₀ is true No differences exist	H ₀ is false Differences exist
Accept H ₀	Correct Report: "No differences"	Type II Error Don't find extant differences
Reject H ₀	Type I Error Detect non-existent differences	Correct Report: "Differences found"

- Goal: Reduce Type II error as much as possible.
- Two aspects

Detection

and

Coverage

Coverage

- Coverage is determined by the Test Suite
- Design Test Suite to cover as much of the code as is practical.
 - 100% coverage is impractical.
- Ignore traditional coverage measures:
 - lines of code
 - program units
- We consider <u>code features</u> only
- Features-Cases (Verification) matrix
 - Column 1 = Name of Feature
 - Column 2 = X if feature is tested
 - Column 3 = X if feature is restarted

Features	Present	⊢	2 companie	345105 1	+	dils. 1	-	-	cy13.i	Drift	-	-	edhtrkm.i	eflag.i			₩	gota27	₩	-	httest.i	hxco2m.	jetjun.	⊢	⊢	131acc.i	₩	pack.i	_	⊢		_		regime.i	-	rthetam.i	\vdash	rtsamppm.	slab3.i	-	state.i	todcnd		\vdash		valv	varvol2.i
Walan Jamania	#	#	1	2	3	3 4	4	5	6	+	7	8	9	10	11	12	13	14	15	16	17	118	19	20	21	22	23	324	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43
Hydrodynamic Component																																															
SNGLVOL	X	X	X	T		T	T	7		1	X	1		X			X		İ	T			X	X	X						X						X	X					X	X	X	П	X
TMDPVOL	X	X	X	X		2	X :	X	X]	X :	X	X		X	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X			X	X	X	X	X
SNGLJUN	X	X	X			2	X :	X	X]	X :	X :	X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X		X	X	X	X			X	X	X	X			X	X	X	X	X
TMDPJUN	X	X	X			2	X		X]	X :	X			X	X	X	X		X	X	X	X	X	X		X			X			X	X	X	X	X	X	X	X				X	X	П	П
PIPE	X	X			Х	()	X :	X	X]	X :	X	X	X	X	X	X	X	X	X	X	X	X		X	X		X	X			X	X	X			X	X	X	X	X	X	X	X	X	X	П
ANNULUS	X	X				T	T	T				T													X												X	X						X	X	П	П
PRIZER	X	X				T	T																				X																			П	П
BRANCH	X	X						J]:	X											X			X						X	X					X	X						X	X		
SEPARATR	X	X																							X												X	X						X	X		
Black box	X	X																																										X			
GE							T	T	7	T	T	T																																			
JETMIXER	X	X				T		\dashv			1	1												X																							\Box
TURBINE	X	X																																									X				

Summary of Code Features Covered

Feature Category	Number of features
Hydro component	29
Volume flag - tlpvbfe	7
Wall friction options	6
Junction flag - jefvcahs	14
Junction form loss	4
Flow regimes	6
Heat structure type	3
Heat transfer modes	7
Heat structure BC types	8
Heat source options	5
Material Prop	3
Metal-Water	3
Subtotal	95

Feature Category	Number of features
Enclosure	2
Reactor kinetics	12
Decay Heat	11
Trips	2
Control variables	32
Tables	8
Flow regimes	6
Equation Solvers	5
Card 1 Options	9
Proprietary	5
Other Major Options	7
Subtotal	99
Total	194

Verification Matrix Generator

- A collection of Unix scripts analyzes the test cases and creates a raw matrix that is imported into MS Word for presentation
 - Input files alone insufficient
 - Input and Output file do not indicate all features tested
 - Special coding activated with verification writes info about other features
- The scripts do fill out the entire matrix.
 - Some is done manually.
- Test Suite Summary
 - 43 input decks comprised of 125 input cases
 - 194 features

3 Major Types of Testing

- Detection is recognition of differences between two <u>different code runs</u>
 - Remove lines with "Time" or "RELAP" before comparing
- Null Testing
 - Compare verification files from two different versions of the code (code ID differs) running the same input
- Restart Testing
 - Compare original run verification file with one created by <u>restarting</u> from an intermediate time
- Backup Testing
 - Compare an original run with a run with at least one forced backup
 - A <u>backup</u> repeats a timestep with same dt and a modified discrete system that accounts for on of the following:
 - 1) Air appearance
 - 2) Velocity flip-flop
 - 3) Water packing

199 card activates verification

- 199 card format
 - 199 Word(1) Word(2) Word(3) Word(4)
- Word(1) can be "verify" or "noverify"
 - "verify" activates verification
 - "noverify" stops verification on a "case" after verify-activation
 - No words 2, 3 and 4
- Word(2) can be:
 - dump write verify dumps on specified steps
 - backair backup for air (non-condensable) appearance
 - backpck backup for water packing
 - backvel backup for velocity flip-flop
 - backall backup every timestep, 2 forward / 1 back

199 card

- If Word(2) is dump, backair, backpck, or backvel
 - Word(3) = start, integer advancement or real time
 - Integer start = ncount
 - Word(4) = shut off-advancement control
 - If Word(3) is an integer, Word(4) = ncount
 - If Word(3) is real, Word(4) = number of advancements
 - Word(4) = -1 means active until end of transient
- NOTE: These Word(2) choices dump for every step they are active
- If Word(2) is "backall"
 - Only verification dump is on final step.
 - For "backall", start = successful advancement
- "199 verify backall 1 -1" performs a backup on every successful step.

Testing Directory Structure & Contents

- Testing implemented with a Directory Structure and Makefiles
- Verify directory holds:
 - Directory for each test case
 - Master Makefile
 - Auxiliary files
- Test case directory holds:
 - Null test input file
 - Restart test input file
 - E.G. for ans.i, the restart file is ans.r.i
 - Possibly an apt-plot script
- NOTE: Backup test input files are generated from Null case input to guarantee consistency
 - E.G. for ans.i, the generated backup input file is ans.bk.i

Master Makefile

- Include files for
 - Location of executable, fluids, tools, verify-target, etc.
 - Lists of input files of the test suite
 - Null, Restart, and Backup currently use same tests.
- Targets
 - Preparation, such as cleaning, linking required files to subdirectories, etc.
 - Run testing
 - Base (null test), restart, backup, or all 3
 - Report on success of: Null, restart, or backup testing

Implementation in Source Code

- New source code module verifymod.F90
 - Its internal subroutines work on its data (no use module stmts)
- Two new subroutine files: verfsum.F, verfbackup.F90
 - These main routines (and internal ones) use additional modules
- Subroutine rdebug was rewritten
- Isolated coding: almost no changes to other RELAP5 coding except to insert calls and access a few verifymod scalars
- RELAP5-3D subroutines affected: dtstep, hydro, syssol, tran, ufilfmod, ufilsmod

Results

- Null testing generated 6 User Problems
- Restart Testing generated 25 User Problems
- Backup Testing generated 37 User Problems
- Many of these relate to using a large number of input cases in restart and backup problems.
- Most have been resolved.

Additional Slides

- The following slides are not part of the presentation
- They add additional detailed information

Hydrodynamic			
component:			
SNGLVOL	SEPARATR	VALVE	CPRSSR
TMDPVOL	Black box	CHKVLV	MTPLJUN
SNGLJUN	GE	TRPVLV	ACCUM
TMDPJUN	JETMIXER	INRVLV	MULTID
PIPE	TURBINE	MTRVLV	SNGLFW
ANNULUS	FWHTR	SRVVLV	MTPLFW
PRIZER	ECCMIX	RLFVLV	
BRANCH		PUMP	

Volume flag tlpvbfe	Wall friction options
t - thermal stratification	Turbulent wall friction
1 - mixture level	Laminar wall friction
p - water packing	Shape factor
v - vertical stratification	Viscosity ratio
b - bundle	User defined
f - wall friction	Frictionless
e – equilibibrium	

Features-Test Matrix

Junction flag jefvcahs
j (jet junction)
e (modified PV term)
f (CCFL)
Wallis
Kutataledze
Bankoff
v (HSE; 0-3)
Top offtake
Bottom offtake
Side offtake
c (choking; 0-2)
Sub-cooled
Two phase
Super-heated
a (abrupt area; 0,1,2)
h (homogeneous)
s (momentum flux, 0-3)

Junction form loss
Constant
Reynolds dependent
Abrupt area change
Connections to six faces

Flow regimes
Horizontal
Vertical pre-CHF
Vertical post-CHF
High mixing
ECC mixer
Drift flux models

Heat structure type
Rectangular
Cylindrical
Spherical
Heat transfer modes
Forced convection
Nucleate boiling
Condensation
Film boiling
Transition boiling
Reflood heat transfer
2D heat conduction

Heat structure BC types
Adiabatic
Convective
Wall temperature
Heat flux (table)
Heat flux (control
variable)
HTC vs. time
HTC vs. Temp
Alternate coupling

Heat structure heat source options
Radial
Table
Control variable
Point kinetics
Nodal kinetics
Gap conductance model

Metal water reaction
Rectangular
Cylindrical
Spherical
Enclosure model
Conduction
Radiation
Alternate fluids
Noncondensable
Valve opening/closing
Boron tracking

Material properties
Built in
Input
Function
Trips
Tables
POWER
HTRNRATE
HTC-T
HTC-TEMP
TEMP
REAC-T
NORMAREA
NORMVOL

Control		
variables:		
SUM	STDFNCTN	TRIPUNIT
MULT	ABS	TRIPDLAY
DIV	SQRT	POWERI
DIFFRENI	EXP	POWERR
DIFFREND	LOG	PROP-INT
INTEGRAL	SIN	LAG
DELAY	COS	LEAD-LAG
FUNCTION	TAN	CONSTANT
FEEDCTL	ATAN	SHAFT
INVKIN	MIN	PUMPCTL
	MAX	STEAMCTL

Features by sections

LSOR

Krylov

Reactor kinetics	Radionuclide	Steady state	Card 1 options
	transport		
Point	Decay Heat	Hydro Solvers	11 Supercrictical
SEPARABL	NO-GAMMA	BPLU	15 ΔtCourant
TABLE3	GAMMA	MA18 (35)	23 Godunov
TABLE4	GAMMA-AC	PGMRES (34)	41K-loss energy dissipation
TABLE3A	ANS73	Time step options	50 No flipflop
TABLE4A	ANS79-1	Semi-implicit	54 Void truncation
Scram (table)	ANS79-3	Nearly-implicit	55 Annular mist
Scram (control var.)	ANS94-1	Hydro-heat explicit	Appendix K
Power history	ANS94-4	Hydro-heat implicit	Decay heat
Nodal	ANS05-1	Δt _{kin} triplock	Metal water reaction
RAMONA	ANS05-4	Δt _{kin} extrap.	Critical flow
HWR	G factor	Movement	CHF
GEN			Post-CHF heat transfer
Control Rod			